Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting
نویسندگان
چکیده
We address instance-based learning from a perceptual organization standpoint and present methods for dimensionality estimation, manifold learning and function approximation. Under our approach, manifolds in high-dimensional spaces are inferred by estimating geometric relationships among the input instances. Unlike conventional manifold learning, we do not perform dimensionality reduction, but instead perform all operations in the original input space. For this purpose we employ a novel formulation of tensor voting, which allows an N-D implementation. Tensor voting is a perceptual organization framework that has mostly been applied to computer vision problems. Analyzing the estimated local structure at the inputs, we are able to obtain reliable dimensionality estimates at each instance, instead of a global estimate for the entire data set. Moreover, these local dimensionality and structure estimates enable us to measure geodesic distances and perform nonlinear interpolation for data sets with varying density, outliers, perturbation and intersections, that cannot be handled by state-of-the-art methods. Quantitative results on the estimation of local manifold structure using ground truth data are presented. In addition, we compare our approach with several leading methods for manifold learning at the task of measuring geodesic distances. Finally, we show competitive function approximation results on real data.
منابع مشابه
Dimensionality Estimation and Manifold Learning using Tensor Voting
We address instance-based learning from a perceptual organization standpoint using tensor voting. The goal of instance-based learning is to learn the underlying relationships between observations, which are points in an N -D continuous space, under the assumption that they lie in a limited part of the N -D space, typically a manifold, the dimensionality of which is an indication of the degrees ...
متن کاملUnsupervised Dimensionality Estimation and Manifold Learning in high-dimensional Spaces by Tensor Voting
We address dimensionality estimation and nonlinear manifold inference starting from point inputs in high dimensional spaces using tensor voting. The proposed method operates locally in neighborhoods and does not involve any global computations. It is based on information propagation among neighboring points implemented as a voting process. Unlike other local approaches for manifold learning, th...
متن کاملLocation and dimensionality estimation of geological bodies using eigenvectors of "Computed Gravity Gradient Tensor"
One of the methodologies employed in gravimetry exploration is eigenvector analysis of Gravity Gradient Tensor (GGT) which yields a solution including an estimation of a causative body’s Center of Mass (COM), dimensionality and strike direction. The eigenvectors of GGT give very rewarding clues about COM and strike direction. Additionally, the relationships between its components provide a quan...
متن کاملManifolds' Projective Approximation Using The Moving Least-Squares (MMLS)
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and non-linear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overc...
متن کاملCharacterizing and Analyzing Diffusion Tensor Images by Learning their Underlying Manifold Structure
The growing importance of diffusion tensor imaging (DTI) in studying the white matter architecture in normal and pathologic states necessitates the development of tools for comprehensive analysis of diffusion tensor data. Operations such as multivariate statistical analysis and hypothesis testing, interpolation and filtering, must now be performed on tensor data, and must overcome challenges in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010